ALGORITHMS FOR EXACT AND APPROXIMATE IDENTIFICATION FROM FINITE TIME SERIES

Jan C. Willems
K.U. Leuven

Kyoto University

May 17, 2005
On-going joint research with

Ivan Markovsky (K.U. Leuven)
Paolo Rapisarda (Un. Maastricht)
& Bart De Moor (K.U. Leuven)
This is a very rich area. It involves

- Algorithms:
 - Numerical data \rightarrow model parameters

- ‘Philosophical’ issues:
 - How to deal with uncertainty
 - Role of stochasticity
 - How to deal with ‘open’ systems, etc.

- Important area for applications, because of its relevance in modeling
Case of interest today

Data: an ‘observed’ vector time-series

$$\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(T) \quad \tilde{w}(t) \in \mathbb{R}^w, \ T \text{ finite}$$

$$\downarrow$$

A **dynamical model** from a model class, e.g. a difference equation

$$R_0 w(t) + R_1 w(t + 1) + \cdots + R_L w(t + L) = 0$$

or

$$= M_0 \varepsilon(t) + M_1 \varepsilon(t + 1) + \cdots + M_L \varepsilon(t + L)$$
Case of interest today

We discuss mainly the case:

‘deterministic’ ID

\[
R_0 w(t) + R_1 w(t + 1) + \cdots + R_L w(t + L) = 0
\]

\[
\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(T) \mapsto \hat{R}(\xi) = \hat{R}_0 + \hat{R}_1 \xi + \cdots + \hat{R}_{\hat{L}} \xi^{\hat{L}}
\]
Case of interest today

- Exact
- Deterministic
- Approximate
- Stochastic
- Approximate
- Deterministic
- Exact
- Stochastic
Towards the end, some remarks on **ID with latent inputs**

\[R_0 w(t) + R_1 w(t+1) + \cdots + R_L w(t+L) = M_0 \varepsilon(t) + M_1 \varepsilon(t+1) + \cdots + M_L \varepsilon(t+L) \]

\[\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(T) \mapsto (\hat{R}(\xi), \hat{M}(\xi)) \]
Basic idea: look through the window (with $\Delta > L$) in order to discover the system laws.

$\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(T)$
Basic idea: look through the window (with $\Delta > L$) in order to discover the system laws.

$\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(T)$
Basic idea: look through the window (with $\Delta > L$) in order to discover the system laws.

$\bar{w}(1), \bar{w}(2), \ldots, \bar{w}(T)$

Is there a recursion, same for all these windows?
Basic idea: look through the window (with $\Delta > L$) in order to discover the system laws.

The windows lead linea recta to the Hankel matrix

$$
\begin{bmatrix}
 \tilde{w}(1) & \tilde{w}(2) & \cdots & \tilde{w}(t) & \cdots & \tilde{w}(T - \Delta) \\
 \tilde{w}(2) & \tilde{w}(3) & \cdots & \tilde{w}(t + 1) & \cdots & \tilde{w}(T - \Delta + 1) \\
 \tilde{w}(3) & \tilde{w}(4) & \cdots & \tilde{w}(t + 2) & \cdots & \tilde{w}(T - \Delta + 2) \\
 \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 \tilde{w}(\Delta + 1) & \tilde{w}(\Delta + 2) & \cdots & \tilde{w}(t + \Delta) & \cdots & \tilde{w}(T)
\end{bmatrix}
$$
Basic idea: look through the window (with $\Delta > L$) in order to discover the system laws.

The windows lead linea recta to the **Hankel matrix**

\[
\begin{bmatrix}
\tilde{w}(1) & \tilde{w}(2) & \cdots & \tilde{w}(t) & \cdots & \tilde{w}(t - \Delta) \\
\tilde{w}(2) & \tilde{w}(3) & \cdots & \tilde{w}(t + 1) & \cdots & \tilde{w}(t - \Delta + 1) \\
\tilde{w}(3) & \tilde{w}(4) & \cdots & \tilde{w}(t + 2) & \cdots & \tilde{w}(t - \Delta + 2) \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
\tilde{w}(\Delta + 1) & \tilde{w}(\Delta + 2) & \cdots & \tilde{w}(t + \Delta) & \cdots & \tilde{w}(T)
\end{bmatrix}
\]
Basic idea: look through the window (with $\Delta > L$) in order to discover the system laws.

The windows lead linea recta to the **Hankel matrix**

$$
\begin{bmatrix}
\tilde{w}(1) & \tilde{w}(2) & \cdots & \tilde{w}(t) & \cdots & \tilde{w}(t - \Delta) \\
\tilde{w}(2) & \tilde{w}(3) & \cdots & \tilde{w}(t + 1) & \cdots & \tilde{w}(t - \Delta + 1) \\
\tilde{w}(3) & \tilde{w}(4) & \cdots & \tilde{w}(t + 2) & \cdots & \tilde{w}(t - \Delta + 2) \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\tilde{w}(\Delta + 1) & \tilde{w}(\Delta + 2) & \cdots & \tilde{w}(t + \Delta) & \cdots & \tilde{w}(T)
\end{bmatrix}
$$
Basic idea: look through the window (with $\Delta > L$) in order to discover the system laws.

The windows lead linea recta to the **Hankel matrix**

\[
\begin{bmatrix}
\tilde{w}(1) & \tilde{w}(2) & \cdots & \tilde{w}(t) & \cdots \\
\tilde{w}(2) & \tilde{w}(3) & \cdots & \tilde{w}(t+1) & \cdots \\
\tilde{w}(3) & \tilde{w}(4) & \cdots & \tilde{w}(t+2) & \cdots \\
\vdots & \vdots & \ddots & \vdots & \ddots \\
\tilde{w}(\Delta+1) & \tilde{w}(\Delta+2) & \cdots & \tilde{w}(t+\Delta) & \cdots \\
\end{bmatrix}
\]

Are there **left annihilitors**, or approximate, or up to a stochastic interpretation, same for all these columns?
Basic idea: look through the window (with $\Delta > L$) in order to discover the system laws.

But first, some language: What do we mean by a model, a model class, an unfalsified model, etc.?
The MPUM
A model := a subset $\mathcal{B} \subseteq (\mathbb{R}^w)^N$, the `behavior'

A family of (vector) time series

Recall notation $\mathcal{B}_{[1,T]}$

$:= \text{all} \text{ `prefixes'} \quad w(1), w(2), \cdots, w(T) \quad \text{of} \quad w \in \mathcal{B}$
A model := a subset $\mathcal{B} \subseteq (\mathbb{R}^w)^N$, the ‘behavior’

\mathcal{B} is unfalsified by $\tilde{w} := \tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(T)$

$\iff \tilde{w} \in \mathcal{B}_{[0,t]}$
The MPUM

- A model := a subset $\mathcal{B} \subseteq (\mathbb{R}^w)^N$, the ‘behavior’
- \mathcal{B} is unfalsified by \tilde{w} : $\iff \tilde{w} \in \mathcal{B}|[0,t]$
- \mathcal{B}_1 is more powerful than \mathcal{B}_2 : $\iff \mathcal{B}_1 \subseteq \mathcal{B}_2$

Every model is prohibition.
The more a model forbids, the better it is.

Karl Popper
(1902-1994)
A model := a subset $\mathcal{B} \subseteq (\mathbb{R}^w)^N$, the ‘behavior’

\mathcal{B} is unfalsified by \tilde{w} $\iff \tilde{w} \in \mathcal{B}[0,t]$

\mathcal{B}_1 is more powerful than \mathcal{B}_2 $\iff \mathcal{B}_1 \subseteq \mathcal{B}_2$

A model class: a family, \mathcal{B}, of models
A model := a subset $\mathcal{B} \subseteq (\mathbb{R}^w)^N$, the ‘behavior’

\mathcal{B} is unfalsified by \tilde{w} : $\iff \tilde{w} \in \mathcal{B}_{[0,t]}$

\mathcal{B}_1 is more powerful than \mathcal{B}_2 : $\iff \mathcal{B}_1 \subset \mathcal{B}_2$

A model class: a family, \mathcal{B}, of models

The MPUM ‘most powerful unfalsified model’

in \mathcal{B} for \tilde{w}, denoted $\mathcal{B}^*_{\tilde{w}}$:

1. $\mathcal{B}^*_{\tilde{w}} \in \mathcal{B}$
2. $\tilde{w} \in \mathcal{B}^*_{\tilde{w}} \mid [1,T]$
3. $\mathcal{B} \in \mathcal{B}$ and $\tilde{w} \in \mathcal{B}_{[1,T]} \Rightarrow \mathcal{B}^*_{\tilde{w}} \subset \mathcal{B}$
The MPUM

- A model: a subset \(\mathcal{B} \subseteq (\mathbb{R}^w)^N \), the ‘behavior’
- \(\mathcal{B} \) is unfalsified by \(\tilde{w} \) \(\iff \tilde{w} \in \mathcal{B}_{[0,t]} \)
- \(\mathcal{B}_1 \) is more powerful than \(\mathcal{B}_2 \) \(\iff \mathcal{B}_1 \subseteq \mathcal{B}_2 \)
- A model class: a family, \(\mathcal{B} \), of models
- The MPUM ‘most powerful unfalsified model’
 in \(\mathcal{B} \) for \(\tilde{w} \), denoted \(\mathcal{B}_{\tilde{w}}^* \)
- Given \(\tilde{w} \) and \(\mathcal{B} \), does \(\mathcal{B}_{\tilde{w}}^* \) exist?
The MPUM

MPUM

Unfalsified

Falsified

OBSERVED DATA
The model class
The model class \(\mathcal{L}^w \)

Our model class (a family of subsets of \((\mathbb{R}^w)^N \)).

It is an exceedingly familiar one. First, \(\mathcal{L}^w \).

\[B \subseteq (\mathbb{R}^w)^N \text{ belongs to } \mathcal{L}^w : \iff \]
The model class \mathcal{L}^w

$\mathcal{B} \subseteq (\mathbb{R}^w)^N$ belongs to \mathcal{L}^w if \mathcal{B} is linear, shift-invariant, and closed.

- \mathcal{B} is linear, shift-invariant, and closed

shift-invariant $\iff \sigma \mathcal{B} \subseteq \mathcal{B}$

σ = the ‘shift’: $(\sigma f)(t) := f(t + 1)$.
The model class \mathcal{L}^w

$\mathcal{B} \subseteq (\mathbb{R}^w)^N$ belongs to \mathcal{L}^w if:

- \mathcal{B} is linear, shift-invariant, and closed
- \exists matrices R_0, R_1, \ldots, R_L such that \mathcal{B} consists of all w that satisfy

$$R_0w(t) + R_1w(t+1) + \cdots + R_Lw(t+L) = 0$$

In obvious polynomial matrix notation

$$R(\sigma)w = 0$$
The model class \mathcal{L}^w

$\mathcal{B} \subseteq (\mathbb{R}^w)^N$ belongs to $\mathcal{L}^w : \iff$

- \mathcal{B} is linear, shift-invariant, and closed

$R(\sigma)w = 0$

- Including input/output partition

$$P(\sigma)y = Q(\sigma)u, \quad w \cong [u \ y]$$

$\det(P) \neq 0$, m inputs, p outputs ($= \# \text{ of equations}$)
The model class \mathcal{L}^w

$\mathcal{B} \subseteq (\mathbb{R}^w)^N$ belongs to \mathcal{L}^w if

- \mathcal{B} is linear, shift-invariant, and closed

$$R(\sigma)w = 0$$

$$P(\sigma)y = Q(\sigma)u, \quad w \cong \begin{bmatrix} u \\ y \end{bmatrix}$$

- There exist matrices A, B, C, D such that
 \mathcal{B} consists of all w's generated by
 $$\sigma x = Ax + Bu, \quad y = Cx + Du, \quad w \cong \begin{bmatrix} u \\ y \end{bmatrix}$$
Let $\mathcal{B} \in \mathcal{L}^w$. Define its annihilators by

$$\mathcal{N}_\mathcal{B} := \{ n \in \mathbb{R}^w[\xi] \mid n^\top \left(\frac{d}{dt} \right) \mathcal{B} = 0 \}$$

Note: $\mathcal{N}_\mathcal{B}$ is a $\mathbb{R}[\xi]$ sub-module of $\mathbb{R}^w[\xi]$. Means:

$$n_1, n_2 \in \mathbb{R}^w[\xi], p \in \mathbb{R}[\xi]$$

$$\Rightarrow n_1 + n_2 \in \mathcal{N}_\mathcal{B}, p n_1 \in \mathcal{N}_\mathcal{B}$$
The module structure

Let $\mathcal{B} \in \mathcal{L}^w$. Define its annihilators by

$$\mathcal{N}_\mathcal{B} := \{ n \in \mathbb{R}^w[\xi] | n^\top \left(\frac{d}{dt} \right) \mathcal{B} = 0 \}$$

Note: $\mathcal{N}_\mathcal{B}$ is a $\mathbb{R}[\xi]$ sub-module of $\mathbb{R}^w[\xi]$. In fact,

$$\mathcal{L}^w \overset{\text{one-to-one}}{\longleftrightarrow} \text{sub-modules of } \mathbb{R}^w[\xi]$$

Consequence: since sub-module is finitely generated, \mathcal{B} is determined by finite number of generators.

For example, the rows of \mathcal{R}, but this is non-unique.
The model class \mathcal{L}^w_L.

We now define our model class \mathcal{L}^w_L. It consists of all $\mathcal{B} \in \mathcal{L}^w$ such that

\exists matrices R_0, R_1, \ldots, R_L

with restricted lag: $L \leq L$

such that \mathcal{B} consists of all w that satisfy

$$R_0 w(t) + R_1 w(t+1) + \cdots + R_L w(t+L) = 0.$$

Polynomial matrix in

$$R(\sigma)w = 0$$

has $\text{degree}(R) \leq L$.

– p.14/33
For infinite observation interval, \(T = \infty \), the MPUM for \(\tilde{w} \) in \(\mathcal{L}_L^w \) always exists.

In fact, it equals

\[
\mathcal{B}_{\tilde{w}}^* = \text{span}(\{\tilde{w}, \sigma \tilde{w}, \sigma^2 \tilde{w}, \ldots\})^{\text{closure}}
\]

\(\exists \) effective computational algorithms to go from \(\tilde{w} \) to the corresponding \(R \).
For finite observation interval, $T < \infty$, the MPUM in \mathcal{L}_L^w is not very useful.

We hence restrict attention to the MPUM in \mathcal{L}_L^w.

Also here the MPUM may not exist. Example:

$$\tilde{w} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 2 \end{bmatrix}, \quad \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \quad \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

has no MPUM in \mathcal{L}_2^w. What is the issue?
The MPUM in \mathcal{L}_L^w is equivalent to the left kernel of the Hankel matrix (‘windows’):

$$
\begin{bmatrix}
\tilde{w}(1) & \tilde{w}(2) & \cdots & \tilde{w}(T - L) \\
\tilde{w}(2) & \tilde{w}(3) & \cdots & \tilde{w}(T - L + 1) \\
\tilde{w}(3) & \tilde{w}(4) & \cdots & \tilde{w}(T - L + 2) \\
\vdots & \vdots & \vdots & \vdots \\
\tilde{w}(L + 1) & \tilde{w}(L + 2) & \cdots & \tilde{w}(T)
\end{bmatrix}
$$

This must have a ‘module-like’ structure, i.e.

$$
\begin{bmatrix}
N_0 & N_1 & \cdots & N_{L-1} & 0
\end{bmatrix}
$$

in left kernel

$$
\Rightarrow
\begin{bmatrix}
0 & N_0 & \cdots & N_{L-2} & N_{L-1}
\end{bmatrix}
$$
in left kernel
Proposition: the MPUM in \mathcal{L}_L^v exits if

$$\text{rank} \begin{bmatrix} \tilde{w}(1) & \tilde{w}(2) & \cdots & \tilde{w}(T - L) \\ \tilde{w}(2) & \tilde{w}(3) & \cdots & \tilde{w}(T - L + 1) \\ \tilde{w}(3) & \tilde{w}(4) & \cdots & \tilde{w}(T - L + 2) \\ \vdots & \vdots & \ddots & \vdots \\ \tilde{w}(L) & \tilde{w}(L + 1) & \cdots & \tilde{w}(T - 1) \end{bmatrix}$$

$$= \text{rank} \begin{bmatrix} \tilde{w}(1) & \tilde{w}(2) & \cdots & \tilde{w}(T - L) & \tilde{w}(T - L + 1) \\ \tilde{w}(2) & \tilde{w}(3) & \cdots & \tilde{w}(T - L + 1) & \tilde{w}(T - L + 2) \\ \tilde{w}(3) & \tilde{w}(4) & \cdots & \tilde{w}(T - L + 2) & \tilde{w}(T - L + 3) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \tilde{w}(L) & \tilde{w}(L + 1) & \cdots & \tilde{w}(T - 1) & \tilde{w}(T) \end{bmatrix}$$

We henceforth assume this to be the case.
Computation of this MPUM
Recursive computation

We need to compute the left kernel of

\[
\begin{bmatrix}
\tilde{w}(1) & \tilde{w}(2) & \cdots & \tilde{w}(T-L-1) & \tilde{w}(T-L) \\
\tilde{w}(2) & \tilde{w}(3) & \cdots & \tilde{w}(T-L) & \tilde{w}(T-L+1) \\
\tilde{w}(3) & \tilde{w}(4) & \cdots & \tilde{w}(T-L+1) & \tilde{w}(T-L+2) \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\tilde{w}(L+1) & \tilde{w}(L+2) & \cdots & \tilde{w}(T-1) & \tilde{w}(T)
\end{bmatrix}
\]

Suffices to compute a set of generators of the sub-module of annihilators of the MPUM. Also, we would like to do this computation

recursively and approximately.
Idea derived from the case $T = \infty$.

Assume time-series data $\mathbb{D} = \{d_1, d_2, \cdots, d_N\}$, $d_k \in (\mathbb{R}^w)^N$.

! Compute the MPUM in $\mathcal{L}^w \sim$ polynomial matrix $R_\mathbb{D}$.

1. $R_0 = I$

2. from $R_k \mapsto R_{k+1}$:
 - Compute $e_{k+1} := R_k(\sigma)d_{k+1}$.
 - Compute E_{k+1} corresponding to the MPUM of e_{k+1}
 - $R_{k+1} = E_{k+1}R_k$

3. $R_\mathbb{D} = R_N$

Reduces pbm to the computation of the MPUM for one time series.
Recursive in T

MPUM with one time-series, d, time-axis \mathbb{N}

$$d = (\cdots, d(t), \cdots, d(-1), d(0))$$

Use the previous algorithm with the time-series data

$$d_{-k} = (\cdots, d(-k-1), d(-k))$$, $-k \in \mathbb{N}$

1. R_{k_0} given, say I

2. from $R_{-k} \mapsto R_{-k+1}$:
 - $e_{-k+1} := R_{-k}(\sigma^{-1})d_{-k+1}$. Looks as $(\cdots, 0, \cdots, 0, *)$
 - Compute E_{-k+1} the MPUM of e_{-k+1}. Very simple!
 - $R_{-k+1} = E_{-k+1}R_{-k}$

3. $R\{d\} = R_0$
Recursive in T

In order to apply this to

$$\tilde{w} = (\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(T))$$

we miss an initial condition. This may be circumvented by considering instead the extended time-series

$$\cdots, \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} \tilde{w}(1) \\ 0 \end{bmatrix}, \begin{bmatrix} \tilde{w}(2) \\ 0 \end{bmatrix}, \cdots, \begin{bmatrix} \tilde{w}(T) \\ 0 \end{bmatrix}$$

and discarding certain of the relations obtained.

Can be implemented using approximate linear algebra computations.
We need to compute a ‘module basis’ of the left kernel of

\[
\begin{bmatrix}
\tilde{w}(1) & \tilde{w}(2) & \cdots & \tilde{w}(T - L - 1) & \tilde{w}(T - L) \\
\tilde{w}(2) & \tilde{w}(3) & \cdots & \tilde{w}(T - L) & \tilde{w}(T - L + 1) \\
\tilde{w}(3) & \tilde{w}(4) & \cdots & \tilde{w}(T - L + 1) & \tilde{w}(T - L + 2) \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\tilde{w}(L + 1) & \tilde{w}(L + 2) & \cdots & \tilde{w}(T - 1) & \tilde{w}(T)
\end{bmatrix}
\]
Consider the Hankel matrices

\[
\begin{bmatrix}
\tilde{w}(1) & \tilde{w}(2) & \cdots & \tilde{w}(T - \Delta - 2) & \tilde{w}(T - \Delta - 1) \\
\tilde{w}(2) & \tilde{w}(3) & \cdots & \tilde{w}(T - \Delta - 1) & \tilde{w}(T - \Delta) \\
\tilde{w}(3) & \tilde{w}(4) & \cdots & \tilde{w}(T - \Delta) & \tilde{w}(T - \Delta + 1) \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\tilde{w}(\Delta) & \tilde{w}(\Delta + 1) & \cdots & \tilde{w}(T - 1) & \tilde{w}(T)
\end{bmatrix}
\]

and let Δ vary from 1 to $L + 1$.
Recursive in annihilators

Basic idea.

Step 1: Compute (SVD) basis R_0 for left kernel of

$$[\bar{w}(1) \quad \bar{w}(2) \quad \ldots \quad \bar{w}(T-1) \quad \bar{w}(T)]$$

and its orthogonal complement S_0.

Keep R_0 as valid zero-th order laws, and replace \bar{w} by

$$\bar{w}' = S_0 \bar{w} = (\bar{w}'(1), \bar{w}'(2), \ldots, \bar{w}'(T)), \quad \bar{w}'(t) \in \mathbb{R}^{w'}$$

This has no more zero-th order laws.
Step 2: (SVD) \(\mathbf{R}_1 = \begin{bmatrix} n_0 & n_1 \end{bmatrix} \), \(n_0, n_1 \in \mathbb{R}^{1 \times w'} \) in left kernel

\[
\begin{bmatrix}
\tilde{w}'(1) & \tilde{w}'(2) & \cdots & \tilde{w}'(T - 2) & \tilde{w}'(T - 1) \\
\tilde{w}'(2) & \tilde{w}'(3) & \cdots & \tilde{w}'(T - 1) & \tilde{w}'(T)
\end{bmatrix}
\]

Organize \(\mathbf{R}_1 \) as the polynomial row vector

\[
n(\xi) = n_0 + n_1 \xi = \begin{bmatrix} r_1(\xi) & r_2(\xi) & \cdots & r_w(\xi) \end{bmatrix}
\]

Compute (Bézout) \(C \in \mathbb{R}^{(w' - 1) \times w'}[\xi] \) such that \(\begin{bmatrix} n[\xi] \\ C[\xi] \end{bmatrix} \) is unimodular.

Keep \(n \) as a valid first order law, and replace \(\tilde{w}' \) by

\[
\tilde{w}'' = C(\sigma)\tilde{w}' = (\tilde{w}''(1), \tilde{w}''(2), \ldots, \tilde{w}''(T - 1)) \quad \tilde{w}''(t) \in \mathbb{R}^{w' - 1}
\]

etc.
Both recursions can be combined, leading to very efficient ways of finding an MPUM.

This is effective for exact data (or in finite field case).
Behavior of the algorithm for T large
Typical way of evaluating SYSID algorithms:

Assume that

\[\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(T) \]

is generated by an element of the model class.

Does the algorithm return the model that generated the data for large \(T \), or in the limit as \(T \to \infty \) (consistency)?
The MPUM in \mathfrak{L}_L^w for

$\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(T)$

returns \mathcal{B} if

1. $\tilde{w} \in \mathcal{B}_{[1,T]}$
2. L is sufficiently large
3. \mathcal{B} is controllable
4. the input component in \tilde{w} is persistently exciting of sufficiently high order

The left kernel of the Hankel matrix is then module-like.
Assume \(\tilde{w} = (\tilde{u}, \tilde{y}) \) generated by behavior \(\mathcal{B} \). Then

\[
\begin{bmatrix}
\tilde{u}(1) & \tilde{u}(2) & \tilde{u}(3) & \cdots & \tilde{u}(T - \Delta + 1) \\
\tilde{y}(1) & \tilde{y}(2) & \tilde{y}(3) & \cdots & \tilde{y}(T - \Delta + 1) \\
\tilde{u}(2) & \tilde{u}(3) & \tilde{u}(4) & \cdots & \tilde{u}(T - \Delta + 2) \\
\tilde{y}(2) & \tilde{y}(3) & \tilde{y}(4) & \cdots & \tilde{y}(T - \Delta + 2) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\tilde{u}(\Delta) & \tilde{u}(\Delta + 1) & \tilde{u}(\Delta + 2) & \cdots & \tilde{u}(T) \\
\tilde{y}(\Delta) & \tilde{y}(\Delta + 1) & \tilde{y}(\Delta + 2) & \cdots & \tilde{y}(T)
\end{bmatrix}
\]

has ‘correct’ kernel & image if

1. \(\Delta > \text{lag}(\mathcal{B}) \)

2. \(\mathcal{B} \) controllable

3. \(\tilde{u} \) is persistently exciting of order \(\Delta + n(\mathcal{B}) \)
Identifiability

\[
\begin{bmatrix}
\tilde{u}(1) & \tilde{u}(2) & \tilde{u}(3) & \cdots & \tilde{u}(T - L(\mathcal{B})) \\
\tilde{y}(1) & \tilde{y}(2) & \tilde{y}(3) & \cdots & \tilde{y}(T - L(\mathcal{B})) \\
\tilde{u}(2) & \tilde{u}(3) & \tilde{u}(4) & \cdots & \tilde{u}(T - L(\mathcal{B}) + 1) \\
\tilde{y}(2) & \tilde{y}(3) & \tilde{y}(4) & \cdots & \tilde{y}(T - L(\mathcal{B}) + 1) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\tilde{u}(L(\mathcal{B}) + 1) & \tilde{u}(L(\mathcal{B}) + 2) & \tilde{u}(L(\mathcal{B}) + 3) & \cdots & \tilde{u}(T) \\
\tilde{y}(L(\mathcal{B}) + 1) & \tilde{y}(L(\mathcal{B}) + 2) & \tilde{y}(L(\mathcal{B}) + 3) & \cdots & \tilde{y}(T)
\end{bmatrix}
\]

kernel det. laws of the system (has rank \(m(\mathcal{B})(L(\mathcal{B}) + 1) + n(\mathcal{B}) \) if

\[
\begin{bmatrix}
\tilde{u}(1) & \tilde{u}(2) & \cdots & \tilde{u}(T - L(\mathcal{B}) - n(\mathcal{B}) - 1) \\
\tilde{u}(2) & \tilde{u}(3) & \cdots & \tilde{u}(T - L(\mathcal{B}) - n(\mathcal{B})) \\
\vdots & \vdots & \ddots & \vdots \\
\tilde{u}(L(\mathcal{B}) + n(\mathcal{B}) + 1) & \tilde{u}(L(\mathcal{B}) + n(\mathcal{B}) + 2) & \cdots & \tilde{u}(T)
\end{bmatrix}
\]

has rank \(m(\mathcal{B})(L(\mathcal{B}) + n(\mathcal{B}) + 1) \).
From the data to the state trajectory
If it is possible to pass from the data

\(\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(T) \)

directly to the state trajectory

\(\tilde{x}(1), \tilde{x}(2), \ldots, \tilde{x}(T) \)

Then we can identify the model by solving

\[
\begin{bmatrix}
\tilde{x}(2) & \tilde{x}(3) & \cdots & \tilde{x}(T) \\
\tilde{y}(1) & \tilde{y}(2) & \cdots & \tilde{y}(T - 1)
\end{bmatrix}
=
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix}
\begin{bmatrix}
\tilde{x}(1) & \tilde{x}(2) & \cdots & \tilde{x}(T - 1) \\
\tilde{u}(1) & \tilde{u}(2) & \cdots & \tilde{u}(T - 1)
\end{bmatrix}
\]

These algorithms go to \((A, B, C, D)\) instead of to \(R\) or to \((P, Q)\). They have realization algorithms as a special case.
How does this work?

\[\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(T) \]

\[\downarrow \]

\[\tilde{x}(1), \tilde{x}(2), \ldots, \tilde{x}(T) \]

Several algorithms. We give 3 of them.

Assume contr., \(\Delta > L(\mathcal{B}) \), and pers. of exc. as needed.
1. Compute ‘the’ left annihilators of \mathcal{H}:

\[
\begin{bmatrix}
N_1 & N_2 & N_3 & \cdots & N_\Delta \\
\tilde{w}(1) & \tilde{w}(2) & \cdots & \tilde{w}(T - \Delta + 1) \\
\tilde{w}(2) & \tilde{w}(3) & \cdots & \tilde{w}(T - \Delta + 2) \\
\tilde{w}(3) & \tilde{w}(4) & \cdots & \tilde{w}(T - \Delta + 3) \\
\vdots & \vdots & \vdots & \vdots \\
\tilde{w}(\Delta) & \tilde{w}(\Delta + 1) & \cdots & \tilde{w}(T)
\end{bmatrix}
= 0
\]
1. Compute ‘the’ left annihilators of \mathcal{H}:

$$
\begin{bmatrix}
\tilde{w}(1) & \tilde{w}(2) & \cdots & \tilde{w}(T - \Delta + 1) \\
\tilde{w}(2) & \tilde{w}(3) & \cdots & \tilde{w}(T - \Delta + 2) \\
\tilde{w}(3) & \tilde{w}(4) & \cdots & \tilde{w}(T - \Delta + 3) \\
\vdots & \vdots & \ddots & \vdots \\
\tilde{w}(\Delta) & \tilde{w}(\Delta + 1) & \cdots & \tilde{w}(T)
\end{bmatrix} = 0
$$

Then

$$
\begin{bmatrix}
N_2 & N_3 & \cdots & N_\Delta & 0 \\
N_3 & N_4 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
N_{\Delta - 1} & N_\Delta & \cdots & 0 & 0 \\
N_\Delta & 0 & \cdots & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\tilde{x}(1) & \tilde{x}(2) & \cdots & \tilde{x}(T - \Delta + 1)
\end{bmatrix}
$$
\[
\begin{bmatrix}
\mathcal{H}_-
\end{bmatrix} =
\begin{bmatrix}
\tilde{w}(1) & \tilde{w}(2) & \cdots & \tilde{w}(T - 2\Delta + 1) \\
\tilde{w}(2) & \tilde{w}(3) & \cdots & \tilde{w}(T - 2\Delta + 2) \\
\vdots & \vdots & \ddots & \vdots \\
\tilde{w}(\Delta) & \tilde{w}(\Delta + 1) & \cdots & \tilde{w}(T - \Delta) \\
\tilde{w}(\Delta + 1) & \tilde{w}(\Delta + 2) & \cdots & \tilde{w}(T - \Delta + 1) \\
\tilde{w}(\Delta + 2) & \tilde{w}(\Delta + 3) & \cdots & \tilde{w}(T - \Delta + 2) \\
\vdots & \vdots & \ddots & \vdots \\
\tilde{w}(2\Delta) & \tilde{w}(2\Delta + 1) & \cdots & \tilde{w}(T)
\end{bmatrix}
\]

\[
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix}
\]

\[\tilde{w} \mapsto \tilde{x} \mapsto \]

- PAST
- FUTURE

- ↑
- ↓

- p.24/33
2. The **intersection** of the span of the rows of \mathcal{H}_-

with the span of the rows of \mathcal{H}_+ equals

$$
\begin{bmatrix}
\tilde{w}(1) & \tilde{w}(2) & \cdots & \tilde{w}(T - 2\Delta + 1) \\
\tilde{w}(2) & \tilde{w}(3) & \cdots & \tilde{w}(T - 2\Delta + 2) \\
\vdots & \vdots & \ddots & \vdots \\
\tilde{w}(\Delta) & \tilde{w}(\Delta + 1) & \cdots & \tilde{w}(T - \Delta) \\
\tilde{w}(\Delta + 1) & \tilde{w}(\Delta + 2) & \cdots & \tilde{w}(T - \Delta + 1) \\
\tilde{w}(\Delta + 2) & \tilde{w}(\Delta + 3) & \cdots & \tilde{w}(T - \Delta + 2) \\
\vdots & \vdots & \ddots & \vdots \\
\tilde{w}(2\Delta) & \tilde{w}(2\Delta + 1) & \cdots & \tilde{w}(T)
\end{bmatrix}
$$

Nice num. impl. (e.g. via left kernel) \sim **subspace ID**
3. Solve for G

$$
\begin{bmatrix}
\tilde{w}(1) & \cdots & \tilde{w}(T - 2\Delta + 1) \\
\vdots & \ddots & \vdots \\
\tilde{w}(\Delta) & \cdots & \tilde{w}(T - \Delta) \\
\tilde{u}(\Delta + 1) & \cdots & \tilde{u}(T - \Delta + 1) \\
\vdots & \ddots & \vdots \\
\tilde{u}(2\Delta) & \cdots & \tilde{u}(T)
\end{bmatrix}

G =

\begin{bmatrix}
\tilde{w}(1) & \cdots & \tilde{w}(T - 2\Delta + 1) \\
\vdots & \ddots & \vdots \\
\tilde{w}(\Delta) & \cdots & \tilde{w}(T - \Delta) \\
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{bmatrix}
$$

G computes \tilde{x}!

\equiv 'oblique projection
These algorithms, compute the left kernel of \mathcal{H}, etc. allow approximate implementations. For the state algorithms, this is worked out very well (subspace ID).

\[
\begin{align*}
\text{SVD} & \quad \tilde{X} = \begin{bmatrix} \tilde{x}(1) & \tilde{x}(2) & \cdots & \tilde{x}(T) \end{bmatrix} \\
\sim & \quad \tilde{X}^{\text{red}} = \begin{bmatrix} \tilde{x}^{\text{red}}(1) & \tilde{x}^{\text{red}}(2) & \cdots & \tilde{x}^{\text{red}}(T) \end{bmatrix}
\end{align*}
\]

followed by LS solution of

\[
\begin{bmatrix} \tilde{x}^{\text{red}}(2) & \tilde{x}^{\text{red}}(3) & \cdots & \tilde{x}^{\text{red}}(T) \\ \tilde{y}(1) & \tilde{y}(2) & \cdots & \tilde{y}(T - 1) \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \tilde{x}^{\text{red}}(1) & \tilde{x}^{\text{red}}(2) & \cdots & \tilde{x}^{\text{red}}(T - 1) \\ \tilde{u}(1) & \tilde{u}(2) & \cdots & \tilde{u}(T - 1) \end{bmatrix}
\]
<table>
<thead>
<tr>
<th>#</th>
<th>Data set name</th>
<th>T</th>
<th>m</th>
<th>p</th>
<th>l</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data of the western basin of Lake Erie</td>
<td>57</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Data of Ethane-ethylene column</td>
<td>90</td>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Data of a 120 MW power plant</td>
<td>200</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Heating system</td>
<td>801</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Data from an industrial dryer</td>
<td>867</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Data of a hair dryer</td>
<td>1000</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>Data of the ball-and-beam setup in SISTA</td>
<td>1000</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>Wing flutter data</td>
<td>1024</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>Data from a flexible robot arm</td>
<td>1024</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>Data of a glass furnace (Philips)</td>
<td>1247</td>
<td>3</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Heat flow density through a two layer wall</td>
<td>1680</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>Simulation of a pH neutralization process</td>
<td>2001</td>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>13</td>
<td>Data of a CD-player arm</td>
<td>2048</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>Data from an industrial winding process</td>
<td>2500</td>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>Liquid-saturated heat exchanger</td>
<td>4000</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>Data from an evaporator</td>
<td>6305</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>Continuous stirred tank reactor</td>
<td>7500</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>Model of a steam generator</td>
<td>9600</td>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
Compare the misfit on the last 30% of the outputs and the execution time for computing the ID model from the first 70% of the data.
Performance

Execution time

![Execution time graph]

- stls
- pem
- subid
Latency minimization
Why latent variables?

\[R_0 w(t) + R_1 w(t + 1) + \cdots + R_L w(t + L) = 0 \]

versus

\[R_0 w(t) + R_1 w(t + 1) + \cdots + R_L w(t + L) = M_0 \varepsilon(t) + M_1 \varepsilon(t + 1) + \cdots + M_L \varepsilon(t + L) \]
Why latent variables?

For the w-behavior, this gives nothing new

(\iff \text{elimination theorem}).

So, what is the rationale for using latent variables ε?
Why latent variables?

Data \(\tilde{w}(t_1), \tilde{w}(t_1 + 1), \ldots, \tilde{w}(t_2) \) with \(\tilde{w}(t) \in \mathbb{R} \)

The model

\[
R_0 w(t) + R_1 w(t + 1) + \cdots + R_L w(t + L) = 0
\]

\(\sim \) either \(w = \text{input, free, } \mathcal{B} = \mathbb{R}^T \)

or \(w = \text{output, } \sim \mathcal{B} \cong \text{sums of ‘exponentials’} \)

\(\sim \) very restrictive.

Assuming unobserved inputs:

\[
R_0 w(t) + \cdots + R_L w(t + L) = M_0 \varepsilon(t) + \cdots + M_L \varepsilon(t + L)
\]

gives better possibilities, e.g. for prediction.
Define the ‘latency’:

\[
\text{latency} (\tilde{\mathbf{w}}, \mathcal{M}) := \text{minimum } \| \tilde{\mathbf{e}} \|_{\ell^2}
\]

with the minimum taken over all \(\tilde{\mathbf{e}} \) such that

\[
R_0 \tilde{w}(t) + \cdots + R_L \tilde{w}(t + L) = M_0 \tilde{e}(t) + \cdots + M_L \tilde{e}(t + L)
\]

i.e. min. over all \(\tilde{\mathbf{e}} \) that ‘explain’ \(\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(T) \).

\[\leadsto \text{ system ID: search for the optimal model,} \]

\[\text{in the sense of minimal latency} \]

in a given model class.
Latency minimization

- How do we compute the latency, the optimal $\tilde{\epsilon}$’s?
- Algorithms for minimization over (R, M)’s in model class.

Latency minimization is a **deterministic** Kalman filtering pbm

The latency is actually equal to the prediction error!

\leadsto deterministic interpretation, system ID toolbox, etc.
Remarks on stochastic SYSID
Why stochastic interpretation?

\[R_0 w(t) + \cdots + R_L w(t + L) = M_0 \varepsilon(t) + \cdots + M_L \varepsilon(t + L) \]

We can consider \(\varepsilon \) as a stochastic disturbance.

If we take also \(u \) as a stochastic process, then \(w \) stochastic.

SYSID pbm is then a statistical one, leading to maximum likelihood estimation (very related to PEM).

It allows evaluation of algorithms in terms of \(T \to \infty \). Nice statistical questions emerge, as consistency, asymptotic efficiency, etc.

\[\to \text{deep theory of ARMAX systems.} \]
Why stochastic interpretation?

It is difficult to argue that stochastic unobserved disturbances offer a realistic explanation of the lack of fit between observations and the deterministic part.

This lack of fit is more likely a result of low order, linear models for nonlinear systems, neglected dynamics, approximation, in addition to unmeasured inputs, which may or may not be stochastic.

Stochastic methods offer the user a ‘certificate’ under which the algorithms work well.
We concentrated on **exact deterministic** SYSID.

- Nice concepts, as MPUM.
- Realization theory as special case
- Subspace algorithms very effective